Discussin

g

ArchiMate

35. Proposed Improvements for ArchiMate 3.1

I might rightly be called a fanboy of ArchiMate, but that
doesn’t mean | am without criticism. | had a whole lot of
criticism on the ArchiMate 2.1 standard. Much of that has
been fixed in ArchiMate 3 (though not always to my exact
liking), but in general the ArchiMate 3 standard is much less
sloppy and much better put together than any previous
version*, It did mean that it was a lot of work coming up
with Edition Ill, as working around limitations in 2.1and not
having improvements of version 3 turned out to have been
influential in the creation of the patterns in Edition Il. This
has repeated itself with the ‘minor’ update from version
3.01to version 3.1and now 3.2.

35.1 Fragmentation of element types

The standard says:

The most important design restriction on the lan-
guage is that it has been explicitly designed to be as
small as possible

And while the standard has remained economical with rela-
tions (only the influence relation has been added since the
original report published in 2007, and relations are often
co-opted for distinct meanings), the same cannot be said
about element types. There has been a rather unchecked
growth, a doubling in fact, from the original ArchiMate

to version 3.2 today. Some of this is unavoidable as new
aspects and domains have been added, but not all. The new
aspects and domains have all brought their own separate
world to ArchiMate, and that is by definition questionable.
After all, all the elements that have been introduced are
part of the reality of an organization. Hence, in principle
they should in one way or another have to be part of what |
have called in Section 6 “An ArchiMate Map” on page 17
‘the enterpriseitself. Good examples of such overlaps are:

+ The Assessment element from the Motivation aspect
represents something that has a real counterpartin the
organization, e.g. areport or even a mail message. As such,
itis a Business Object that is created (Access) by some
sort of business behavior. The same can be said of other
elements from Motivation, such as Goal, Requirement/
Constraint, Principle, Stakeholder and so forth. They
don’t exist in a universe outside the organization, they are
part and parcel of it;

+ The Work Package from the Implementation and Mi-
gration layer is almost indistinguishable from a Business
Process. But it cannot use applications, nor can it Access
data or material;

» AnyBusiness Role is by definition also a Stakeholder. But
we cannot model for instance one Business Role Influenc-
ing another.

View 356 on page 204 shows a few relations in red that
make a lot of sense, but that are not allowed. The blue
oneis allowed since ArchiMate 3. The situation is actually
worse than it looks. The Motivation aspect uses a lot of As-
sociations as formal direct relations. The fact that Associa-
tionis allowed between all elements hides thus some of the
fragmentation because thereis aloophole, i.e. | can Associ-
ate not just a Stakeholder with a Goal, | can also Associate
a Business Role with it, but not because the metamodel

is particularly good, but because there is this general rule.
This is shown in green.

35.2 Remove historical baggage

Related to this is the growing amount of historical baggage
that ArchiMate carries. The designers are apparently very

careful to strive for maximum backward compatibility, but
the result is a situation that | would label as ‘technical debt’.

* With the exception of the somewhat slipshod version 3.0 which contained the better (though not yet fully complete) foundation, but also
many contradictions, omissions and glaring errors, such that it was technically unusable as it forbade even many foundational relations.

Page 203

A gOO d exXam- Potential Information Secu%
Breaches

7
No IP Vulnerabilities

Ensure IP Security
(Goal)

pleisthe As- (Driver)
signment from l

¥

“loophole’ example

(Requirement)

D D

Team Coordinator Systems Engineer

tem Software. When it

-
(Business Role) not
allowed

l l

(Business Role)

Vulnerabilities found in v1 Assess Vulnerabilties

was introduced as part
of the original Archi-

(Assessment) (Business Process)

Device to Sys-
}al@.?«fee{

Plan Updates
(Business Process)

Mate, System Software 3

was positioned as the
behavior of a Device.

= (D) ot Q)
allowed Update Server
(Work package)

. J Y,

not allowed T

not allowed

0OSv1
(System Software)

OS v1 Distribution
(Artifact)

That made it perfectly
logical to use Assign-

[N [¢)
OS v2 Distribution 1
(Artifact) (System Software)

0OSv2

ment between the two
to model ‘perform-

Updated Server
(Deliverable)
5 (S

ing behavior’ just as
between Business Role

[srvOO1]
(Device)

and Business Process

for example.

Butin ArchiMate 2,

Old
(Plateau)

New
(Plateau)

internal Technology
behavior (e.g. Tech-
nology Function) was
introduced to model the infrastructure behavior of infra-
structure active elements such as a Device (or any meta-
model-Specialization of Node). The old Assignment was
kept and (in part implicitly) redefined as ‘deployment’. But
not completely. For instance, if | add a special GPU card
toa PC,isn't that deployment (from Device to Device)
too? | can deploy System Software on System Software.
Why can’t | deploy an Application Component on System
Software? Note: if we change something about Realization
and/or derivation, this could all be removed and become
derivable (see below).

And while I'm at it: a simple improvement would be to
rename System Software to Software Platform.

Location was added in ArchiMate 2 as a sort of special-
ized grouping without the generic Grouping we have

now. Then in ArchiMate 3 we got Facility and Grouping

as real elements. There is serious overlap between these
three. Would we have added Location to ArchiMate 3 if it
hadn’t been already in ArchiMate 2 (as a ‘fix’ for not having
Grouping)?

Representation has been in ArchiMate from the start,
mainly as a means to model printed information (the PDF
example has always overlapped with Artifact). Given that
we now have Material as well as Artifact, Representation
can go.

Path and Communication/Distribution Network may be
repositioned in a cleaner way as well. Why aren’t they
(abstract) Nodes which offer Technology Services through
Technology Interfaces? Why do they ‘serve’ via Associa-
tions? Do we really need them? We have Flow!

35.3 Issues with abstractions

Thereis in my view a many-pronged confusion in
ArchiMate over abstraction.

View 356. Various examples of real relations we cannot do in ArchiMate

Section 7.17 “Abstractions” on page 31 already gave us

an overview of the many ways we can model abstractions
in ArchiMate. The standard adds to this in Section 3.6,
when it (amongst other things) also tells us that we may
use behavioral elements as abstractions as they are ‘imple-
mentation-independent’ (which then frankly is ignored in
the rest of the standard). Then we have the complicated
role of Specialization as described in Section 8.4 “Special-
ization in the Meta-model” on page 34 and Section 8.5
“The Specialization Relation in an Actual Model” on page
34.

Ignoring the — from the perspective of the rest of the
standard — confusing suggestion that the behavior of an
active elementis an abstraction of the ‘implementation’
(instead of simply the behavior performed by the ‘acting
element’), and ignoring the issues surrounding Specializa-
tion, we are left with the following abstractions in Archi-
Mate:

« Identity". When one element is an abstraction of another,
the two elements are both a representation of the same
thing at a different ‘level’. We see this in ArchiMate as the
TOGAF logical/physical Realizations within the applica-
tion and technology layer. We also see this in the Realiza-
tions from the passive elements (the Business Object or
the Application Component or the System Software rep-
resents the same thing as the Artifact, just in a different
layer or aspect). We also see this in the Realizations of
core interfaces and behavioral elements to other layers,
and when a Deliverable Realizes a core element;

« Creation. When one element is an abstraction of another
it means that one element creates another element that
does not represent the same thing. We see this when
internal behavior (function, process) Realizes external
behavior (service — though | disagree too service is an
independent abstraction from internal behaviour, see
Section 35.4 “Service as Composite Part of Function/

* ~When multiple elements Realize a single other element, the word ‘identity’ requires an explanation. All the identities that Realize the target
are together the one identity that is Realized. We will not take those subtleties into consideration in the story as they only complicate but not

really change this analysis in a fundamental sense.

Page 204

Mastering ArchiMate Edition 3.2

Process”)”, when a core element Realizes
a Requirement, or when a Work Package
Realizes a Deliverable or a core element;

Customer
Process

« Collection. The Realization of Strategy
elements is harder to pin down. Close to
Identity: it can be experienced as collec-
tions of a sort of the elements that Realize
them. Note: currently, Aggregation is used
to create a network or path from under-

Banzais

hat are the requirements?

SUBWsINGSY
JuswiAeq
Bouquet
Greeting

lying infrastructure. It is quite enticing to
see Path and Network as abstractions of
that underlying infrastructure.

Sales
(in shop, visible for
gustomer)

tart event

Itis confusing that Realization is used for

Get Order

Get paid and
Deliver

process

Visible part of the

Customer
leaves

non-ldentity abstractions. If something pas-
sive is created, the Access relation is more
appropriate. If an active element creates
behavior, we have Assignment. If we are
collecting/grouping something, Aggregation

@
2
v
3
[}

a
o

Rl
=

5

w
9

T
Ql
=
o

o

Floral Arranger
(In back office, not
visible for customer)

Create
Bouquet

Order

Entire process

Bouquet

is more appropriate.

35.4 Service as Composite Part of Func-
tion/Process

There are two views of what a service is.

Oneis that the serviceis visible behavior that is strongly
coupledto the invisible behavior. E.g. if you describe a sell-
ing process that creates a service which is used by a buyer,
all the behavior that is visible to the buyer is an inseparable
part of the process (and its description). It is not only part
of the service, it is at the same time part of the process
and the service is seen as the (visible) Composite part of
the process. This, we could call the ‘constructionist view’
of aservice.

The other is that a service provides some value to the envi-
ronment and that it is an abstraction from the nitty-gritty
details of the internal behavior (e.g. a function). In other
words, some people want to see a service as an abstrac-
tion that is weakly coupled to the (independent) internal
behavior. For them, the service is disjunct from and is inde-
pendent behavior, for instance because the actual service
delivery requires the behavior of the service consumer to
succeed’. This we could call the ‘abstractionist’ view of a
service.

View 358. Selling Flowers. Exposed behavior is part of the total process.

Insurance Customer — the behavior that the Luggage In-
surance Customer actually uses must be part of the Sell a
Luggage Insurance Business Process. It cannot be other-
wise. There exists no behavior that Serves the customer
that is not performed by the seller as part of a Business
Process. Suppose at some pointin the Sell a Luggage
Insurance Business Process the contract is presented to
the customer. This is definitely part of what the customer
experiences, it is ‘exposed’ behavior, but it is definitely
also part of the ‘internal’ behavior, because it is part of the
process. Or have a look at View 358, which shows in BPMN
how the visible/exposed behavior cannot be anything but
part of the service provider’s process.

In other words: the insurance seller’s ‘offer the contract
for signing’ activity is both part of its process but also a
part that is externally visible/usable, that is exposed. It is
the same activity, not something independent. Looking

at it as somethingindependentintroduces an abstraction
that makes life more difficult, not easier. After all, we must
remember Al's old adagium: the best model of the world is
the world itself.

Important to note for this is that | am not talking about
modeling the nitty gritty details, even if my argument to

In the ArchiMate metamodel,

E (Application Service)

= Mmake the split different stems

the view is mixed: abstrac-
tionist on the side of the

service and constructionist

on the side of the interface, as (Prim)

E (Application Function)

can also be seen in the basic
pattern of View 357.

The constructionist view fits

reality better in my opinion. Suppose, for instance, you
have a Business Process that Realizes a Service — say a
Sell a Luggage Insurance Business Process that Realizes a
Luggage Selling Business Service which Serves a Luggage

View 357. The Basic Application Pattern

(Application Interface) | TrOM the analysis that the
y, ‘external’ (detailed) behavior
must be part of the ‘internal’
) (detailed) behavior. Both the
‘—$ (Application Component) | internal behavior (e.g. process)
J and the external behavior
(service) may be abstractin
your model. After all, the fact
that, e.g., Business Process and Business Function are
hidden from the outside world does not mean they must
be detailed. We think in ‘hiding the details’ but in Enter-
prise Architecture models you will not want to see some-

* Though | know from private communication that seeing service as independent from ‘internal’ behavior (based on the idea that a service
is a sort of ‘interaction’ that cannot be seen independent from the behavior of the service consumer) was the view of (some of) the original
ArchiMate designers, it can nowhere be found in the text of ArchiMate, from the original document to today. See also Section 35.4.

T Avrather transactional view. There are clearly services that can exist without anyone consuming them, such as broadcasts. See also the

footnote on page 205

Discussing ArchiMate

Page 205

thing like the process details anyway. For that, we have
languages like BPMN. The Business Service is always an
abstraction of actual behavior, but so is a Business Process
in ArchiMate.

Hence, from a constructionist view, the external behavior
must be a part of the internal behavior, just as the exter-
nal interface already is a Composite part of the Node,
Business Role or Application Component, offering that
interface to the outside world. In other words: from a con-
structionist view we have ‘behavior’ and ‘external behav-
ior’ which is part of ‘behavior’ and the obvious relationis a
Composition.

In the original ArchiMate, there was no Requirement ele-
ment type. Given the importance of the service consumer,
it was logical the requirement side ended up (informally)
inside the service concept. When thinking along the lines
of ‘business requirements drive ser-

vice definition’ — hence, outside-in —

=)
service also got arole as the ‘require- —

ment/value’ side, the side that has to
do with the consumer. On the inter-

face side, this thinking was mirrored

in ‘required/provided’ interfaces (an

aspect already removed from Archi-
Mate).

But now that ArchiMate has the
Motivation Extension to cover the
requirement side, | think that we
have the means to make a clean cut:
the Requirement concept from the
Motivation Extension covers the
‘requirement/value’ side and we can
see the service itself — cleanly — as the ‘externally usable
(‘exposed’ as ArchiMate itself now puts it) part’ of the
provider’s behavior (which has a meaning for the envi-
ronment). In fact, it has been originally defined that way
by the ArchiMate designers. The standard says about the
generic ‘service’ concept:

derived

Business Service A

Business Function A

[

An external behavior element, called a service, rep-
resents an explicitly defined exposed behavior.

The standard explains:

Thus, a service is the externally visible behavior

of the providing system, from the perspective of
systems that use that service; the environment con-
sists of everything outside this providing system.
[...] For the users, only this exposed behavior and
value, together with non-functional aspects such

as the quality of service, costs, etc., are relevant.
These can be specified in a contract or Service Level
Agreement (SLA). Services are accessible through
interfaces.

The point I am making can be summarized as:

« theserviceis behavior and all behavior of the performer
(the process) is an integral whole of which the ‘exposed’
isapart;

View 359. Constructionist Interpretation of Service,
Combined with Motivation Extension Requirement

« thefact that you can (and probably should) design a
service independently does not mean it should exist
independently.

Interestingly. The definitions in ArchiMate 3 have changed
from ArchiMate 2 and now support a ‘service as exposed
part of behavior’ very well. E.g. for Business Service:

ArchiMate 2: A business service is defined as a service”
that fulfills a business need for a customer (internal or
external to the organization).

« ArchiMate 3: A business service represents an explicitly
defined exposed business behavior.

Instead of the need and the customer, we now only have
the explicit mention that it is ‘exposed’ behavior Note: ‘ex-
posed’ does imply that it is behavior solely by the ‘exposer.

The structure surrounding the ser-
vice concept then becomes like View
359 (example at business layer level),
where the service is a Composite part
of the function. Using the Motiva-
tion Extension, the service Realizes

a Requirement which is Associated
with a Value. This more or less states
that the Value is only there when the
Requirement has been Realized, which
is kind of nice.

derived

A
Business Function B

ArchiMate 3 has dropped Association
from the set of relations for which
derivation rules exist. It would how-
ever be nice if some sort of derivation
with Association would remain pos-
sible as long as the relation also plays a role in the actual
metamodel. Hence, I've kept it in the example in View 359
to show what would be nice derived relations. Together
the two orange relations would allow the derivation of
the red Association linking Business Service to Value. And
as Business Service A can be used by Business Function B,
the red Association and the green Serving could be used
to derive the blue Association. In other words: Business
Function B has an association with the Value (because that
Value is there when Business Function B uses Business
Service A.lam not yet certain whether | want that deriva-
tion both with structural and dependency relations.

| too suspect that in the behavioral column, it has been
more natural to talk about a service as being ‘created’
(the ‘second’ type of realization in Section 35.3 “Issues
with abstractions” on page 204) because the behavioral
columnis all about ‘doing’ and ‘creating’ is a verb. In the
active structure column, it could only be sensibly seen as
an interface being ‘part of’ an Application Component or
Node or Business Role. But it works as well (even better)
if we just see the service as a (usable) part of the function,
just like the interfaceis a (usable) part of the role/compo-
nent/node. Not external/internal division but exposed/
visible versus ‘everything’

Changing the Realization relation (between function/pro-
cess and the service it provides) to a Composition relation
also removes the unnecessary difference between the

* Which before has been defined as: “A service is defined as a unit of functionality that a system exposes to its environment, while hiding
internal operations, which provides a certain value (monetary or otherwise)”.

Page 206

Mastering ArchiMate Edition 3.2

behavioral column and the active structure column. The
result looks like View 360.

This also has the effect that — using the current derivation
rules — the derived relation between an active element and
its serviceis always Assigned-To, it no longer depends on
the route taken, which is also kind of nice.

35.5 Automated Processes

In Edition Il of Mastering ArchiMate, | proposed a few
changes. One of these was to use (identity-)Realizations
to model automated processes. The idea was that ap-
plication (and technology) layer would be able to Real-
ize representations of themselves in higher layers. This
would make it possible to better combine automated and
non-automated elements of your landscape in a single
structure. By having an Application Component Realize a
(robotic) Business Role, the (robotic) Business Role could
be modeled as a full-fledged business entity together with
the humans. The proposal can be seenin View 361. This

[BU) BU) g
ServiceName 7 RoboticInterfaceName
(Business Service) (Business Interface)
BU) = BU) =
ProcessName RoboticRoleName
(Business Process) [D> (Business Role)
[AppName] : [AppName]
ServiceName —— InterfaceName
(Application Service) : (Application Interface)
[AppName] A Lk [AppName]
FunctionName ComponentName
(Application Function) (Application Component)

View 361. Proposed meta-model Realization rela-
tions for automated processes

is the ‘automated process’ version of View 360. They are

the ‘service-is-part-of-behavior’ metamodel suggestions
of ArchiMate’s two ways of looking at layering (See 12.10

“Layering Ambiguity” on page 53).

Now, ArchiMate 3 comes with the three orange Reali-
zations, but not with the red one. It also has added the

S\
BU) S [BU) g
ServiceName InterfaceName
(Business Service) (Business Interface)
D) [axy)
BU) = (BU) [BU] ?
ProcessName RoleName Name
(Business Process)) (Business Role) (Business Actor)
[AppName] [AppName] 9
ServiceName InterfaceName
(Application Service) (Application Interface)
A
[AppName] [AppName]
FunctionName ComponentName
(Application Function) (Application Component)
J

View 360. Proposal: A service is the Composite usable part of a
Function

Discussing ArchiMate

same pattern to the metamodel between Technology on
the one hand and Application and Business layers on the
other. Suddenly, the ‘identity-Relations’ (see Section 12.10
“Layering Ambiguity” on page 53) have become center
stage.

I’'m not yet quite happy with this. What I like is the flexi-
bility it gives you to have lower layer elements play a first
class citizen’s role in the business layer. What | don’t like
is the fact that the derivation of an Assignment (e.g. from
Node to Technology Process) followed by an identity-Re-
alization (e.g. from Technology Function to Business
Function) derives into a Realization. There are two major
problems with this.

The firstis that the Realization from Node to business
behavior misleadingly suggests that the Business Process
is an abstraction of the Node. The second is related to
this but more practical. Take the semi-automated process
in View 362. The marketeers prepare a mailing, the big

D D
Marketeer Transporter
(Business Role) (Business Role)
T D) T D)
[Marketing] = [Facilties] = [Transport] =)
Create Mailing Print Mailing Ship Mailing
(Business Process) (Business Process) (Business Process)
2t
£
f-H
N
[BigPrinter] =) [BigPrinter] Ol
Print a Batch performing Print Software
(Technology Process) (System Software)

View 362. Technology performing business behavior

printer system prints it and the transport people ship it.

In ArchiMate 3, we can add the Print Mailing (Business
Process) and let it be (identity-)Realized by the Technol-
ogy Process that is performed by BigPrinter’s software.
Now, you might not want the intermediate clutter and the
nice thing is of course that you don’t need it. It is perfectly
all right to model the System Software to perform that
automated business process. The derivation of the (violet)
Assignment and the (red) Realization is the (blue) Realiza-
tion. So, our diagram becomes View 363:

So far so good, but these three Business Processes are not
full end-to-end processes. They are mere steps, sub-pro-
cesses, in the whole. If we add the whole we get View 364.

@ o [e) @
Marketeer [_B|gPr|nter] Transporter
(Business Role) Print Software (Business Role)
(System Software)
T D) D)
[Marketing] = [Facilties] = [Transport] =
Create Mailing Print Mailing Ship Mailing
(Business Process) (Business Process) (Business Process)

View 363. View 362 with the technology behavior left out

Send Mailing (Business Process) =
[Marketing] = [Facilties] =) [Transport] =
Create Mailing Print Mailing IR Ship Mailing
(Business Process) (Business Process) (Business Process)
@ o [e) [
Marketeer LBlgPrlnter] Transporter
(Busi Role) Print Software (Busi Role)
usiness Role (System Software) usiness Role

View 364. The process steps of View 363 Aggregated in an overall parent
process

Page 207

Now, suppose we want to get an ever simpler, more ab-
stracted, diagram. We are architects, after all. We just want
to show the overall Business Process and who performs it.
We can do that as shown in View 365:

Send Mailing =
(Business Process)
= [BigPrinter] O] =

Marketeer
(Business Role)

Transporter

Print Software (Business Role)

(System Software)

View 365. Modeling how people and automation together
perform the semi-automated process of View 364

Sadly though, we can’t. Because we are not allowed to
have different types of relations on a Junction. And that is
awise constraint of ArchiMate because it would be totally
undefined what a Junction means if it was allowed.

The problem can be easily solved as per the suggestion in
the next section:

35.6 Changing the Strength of Assign-
ment and Realization

The strength order of structural relations was decided
upon, but I have no documentation of why that particu-
lar order was chosen and privately | have been told it was
more intuitively decided than reasoned. Part of it may
have been the result of the ‘abstractionist’ (weakly cou-
pled) view on the service concept.

What happens if we switch Assignment and Realization in
the strength table for deriving structural relations? If we
start in the middle of the ArchiMate meta model, the basic
Application Pattern (see View 357 on page 205), the
derived relation of the route from Application Component
via Application Function to Application Service changes
from Realization to Assignment. Incidentally, that is the
same result that we get if we follow the route from Appli-
cation Component via Application Interface to Applica-
tion Service.

This is kind of nice in two ways: first, because the derived
result does not depend on which route you take. But
secondly, because it is kind of nice to have Assighment as
the resulting relation between an active component and a
behavioral component. It means that you never break the
pattern that an active element is Assigned-To a behavioral
element. And that is a much more direct statement about
your landscape (who does what) than the fuzz that the
architect’s abstractions bring.

In the real ArchiMate meta-model, the derived relation
from Node, via Assigned-To to Artifact, via Realization

to Data Object and via Realization to Business Object is
Realization. If we switch strengths of Assignment and Re-
alization, the resulting relation would become Assigned-To
in its meaning of ‘resides on'. In other words the Node is
Assigned-To the Business Object, or, the Business Object
resides on the Node, which is | think a slightly cleaner way
of looking at it than that the Business Object is ‘an ab-
straction’ of the Node.

Page 208

When we change these strengths, the derived relation of
“Device Assigned-To Artifact Realizes System Software”,
becomes Assignment, which is also the direct relation
that still exists in the metamodel, which can then safely be
removed cleaning up the baggage of the past.

Another effect is that System Software that is As-
signed-To Artifact that Realizes an Application Compo-
nent becomes a derived Assignment. We nicely get that
Application Component — just like System Software — can
be deployed on System Software. As is the fact in the real
world.

View 366. TOGAF ABB and SBB

In fact, | would like to see the (identity-)Realization rela-
tion become the strongest relation of them all. This makes
alot of sense. After all, what the identity-abstraction says
is that both ends
of the relation are RO TEE | _——
the same thll’lg, jUSt (Application Component) (Application Function)
differently repre-
sented. So for me,

SAP Solution Building
when someone wants " Block
to model TOGAF’S (Application Component)
logical Architecture
Building Block and
Solution Building Sahsclinon B Accounting :
Block, it makes sense (Application Component) e
that View 366 can
turninto View 367.

View 367. Derivation from View 366

35.7 Make Access multi-directional

ArchiMate 2.0 removed the bi-directionality of the As-
signment relation that existed in ArchiMate 1, and that
was a good move. That bi-directionality in ArchiMate 1

led to all kinds of senseless derived relations. ArchiMate
2.0 removed all of those and added the ones that were no
longer derivable and that made sense explicitly to the core
meta-model.

So, why propose now to make another relation bidi-
rectional? Well, what drives this is a reality, namely that
Behavior may depend on passive elements, and not only
the other way around. A good example is application
maintenance from 18.6 “Secondary Architecture: Appli-
cation Maintenance” on page 106. Here, the application
maintenance process edits a file, say an "ini” file, that
influences an application’s functionality. The application’s
functionality is dependent on the settings in the file (on
the ‘Settings’ Data Object the Artifact realizes). Though
the Artifactis shared, the Data Object isn’t, which shows
up when you make errors in that ini and the application
crashes.

Actually, | think it is best to make the direction of the Ac-
cess relation depend onits ‘read/write’ status:

« Read Access: direction from passive structure to behav-
ior;

« Write Access (including Create and Delete): direction
from behavior to passive structure;

« Bothreadand write Access, or undefined: bidirectional.

Toillustrate what derived relations we can have when Ac-
cess becomes bidirectional, have a look at View 368.

Mastering ArchiMate Edition 3.2

The violet and blue , o
File Share [B
(Infrastructure Service)

File
(Artifact)

Access relations
are the original
ones. Under the
ArchiMate 3.0.1
rules, none of the
other Access rela-
tions are derivable,
because the Access
relations runs from View 368. Multi-directional Accessderivation
behavior to pas-

sive. However, if we use the multi-directional approach,
the green Access relation becomes derivable from the blue
Access and Serving relations. But now we also can derive
the red Access relations and that is what we do not want.
Luckily, the standard limits (in Appendix B) the derivation
of Access to end-situations where one side is a passive
element. This could be made bidirectional. Note that if we
limit Realization to the ‘identity’ role and we start using
the Access relation for the ‘creation’ role, the situation
becomes more complex and the ArchiMate designers need
to solve a more complex puzzle.

Read-only File Share
(Technology Service)

=
B
o
5
=1
e
=
B
2
=
3
2
8

A

[System Y]
(Application Function)

35.8 Allow two-way Flows and Triggers

This one is easy. Two way Flows and Triggers would be a
very easy and efficient way to model two way dynamic
interactions. Especially for Flows — and certainly at a high-
er abstraction level — communication is often two-way.
Having to model two separate Flow relations for thatis a
bore. This could even be solved by allowing in the standard
the use of a two-way form to represent under water two
separate relations.

35.9 Allow Serving to other relations

In section24.4 “Routing and Orchestrating Middleware
(ESB and APIs)” on page 129 we encountered the
diagram repeated here in View 369. | modeled that some
service — in this case a Technology Service — was instru-
mental in

makinga .Order :
(Business Object)
Flow pos-
sible. What A _ A
[Sales System] [Accounting System]
l wa nted Sales Order Management
t d . (Application Function) (Application Function)
O aolsuse i
Serving fO r [Tibco] = [Warehousing System] A
Order Topic Routi [[M
that, but (Technolagy Semvice {Applcaton Functor)
thatis not
allowed. View 369. The ESBas infrastructure ‘Realizing the Flows
Soluseda

directed Association. But if you think about it, the Flow is
a kind of a shorthand for behavior. Structurally, we would
let the Technology Service Serve the Sales and Inventory
Management functions. But Serving the Flow is much
more precise.

There are many more changes that | think could be made,
but these are more radical. | even have some radical
enough ideas that — were they implemented — we would
have to say thatitis really a new language and a new ap-
proach to modeling.

Discussing ArchiMate

Having said that, even within the context of ArchiMate,
we could do some pretty radical things that increase the
power of the language, while enabling options to simplify
other parts. I'm not going to write this all down here in
detail, but I would like to illustrate some by providing you
with a single example. Take alook at View 370. This view,
which — let’s remind people who are leafing through the

[My Business] Q
Some Automation A
(Application Function)
[My Business] [My Business] A
Some Automation C Some AL ion B
(Application Function) (Application Function)
pp! pp!
[MyBusiness] A I3
Topic Orchestration and FoneyA
(Business Object) Communication («Network» Node)
(Application Function)
Layer 2 Fabric S Layer 3 Routes S
(«Switch» Node) («Router» Node)

View 370. Some rather radical ideas

book and starting at random somewhere — is absolutely
not valid ArchiMate at the moment contains the following
patterns:

« Thetwo-way Flow as mentioned in section 35.8 “Allow
two-way Flows and Triggers”;

+ Letting external behavior Serve Flows and Triggers as
mentioned in 35.9 “Allow Serving to other relations”. If
we could do that, the one shown in the diagram would be
derivable;

« Attaching Flows to other Flows to build actual communi-
cation patterns. E.g., by extending this, one could model
buses or hubs. Here shown as just attaching flows to
flows, but in current ArchiMate we could already do this
by having a central hub (a Junction) and let all the Flows
be spokes. In that case, however, we should be able to
Serve the Junctionsinstead;

« LetaServingrelation Access passive structure. The rea-
soning is this: by looking at Serving as being an extension
of what external behavior/structure is we could connect
the payloads involved. Note, we can already do this with
Association;

« LetServing Relations be Served in turn. This could also
be derivable by making an outgoing Serving relation of an
element be able to inherit an incoming Serving relation
to that same element. But a direct relation is more useful:
itis clear that this structural relation depends on another
structural relation.

You could make the same arguments about for instance
Serving being allowed to Serve all structural relations. E.g.
a certain service enables that a certain active element is
Assigned to a behavior element. That would be modeled
by a Serving relation from the enabler to the Assignment
in question. It would also make the Communication and
Path elements prime candidates for a more abstract role
in the Business Layer (as Specializations of Actor?) as we

Page 209

could do the technical side with normal technical ele-
ments).

35.10 Why change ArchiMate?

[think ArchiMate is great. It is the best thing since sliced
bread for Enterprise Architecture modeling. The language
is not strictly formal, but its concepts and relations have
been selected for usability, and as Uncle Ludwig explained
to us, that it one of the best tests of meaningfulness.

The world of Enterprise Architecture stretches from

the strictly logical world of bits and bytes to the not-al-
ways-so-logical world of human behavior. It is unavoid-
able that such a stretching exercise leaves its marks. So,
itis easy to find (logical) fault with the language, as | have
shown as well. But from a business perspective (a human
perspective) ArchiMate is very

good at enabling you to model l_ soseat
to the extremes of Enterprise
Architecture. And the fact that

— even without all these im- Surgeon
provements — we still were able
to use the grammar to the ex-
tent we did shows how powerful
the language already is.

With the right use of patterns
and the right discipline and a
good knowledge of the powerful underlying ideas, you can
take this language far. Even without the improvements
proposed by me in this chapter.

behavior

But I do think cleaning a few things up and improving the
language here and there would make it greater still. It is
up to the — by nature (and rightly so) conservative— stan-
dards body to take that step. Standards bodies should

be conservative and slow, or the standard would be too
volatile to be a real standard. On the other hand: when
‘backwards compatibility’ becomes your main worry, and
you cannot innovate, the standard will probably die.

Having said that, | must say that if you write a book like
this (with all that detail and hundreds of diagram, and all
those small side remarks that are so instrumental in giving
you a feel for the language) every update of the stan-
dard, — however " minor’ — tends to become a lot of work.
Because when the standard changes, every detail has to be
checkedifitis still correct. Thatis hard. Hence, | think that
there probably still are details in this book that are incor-
rect. There must be. If you find them, mail me.

In the meantime, | have come to the conclusion that |

both like improvements and hate them for the inordinate
amount of work they result in. Some changes would mean
| would have to write an entirely new book as with new
possibilities the existing patterns shown would become
too suboptimal. You would still learn the grammar, but the
patterns would not be necessarily good ones.

So, making a decision about these changes would be a
nightmare.

Luckily, itis not up to me but up to The Open Group.

Page 210

35.11 ArchiMate’s two most serious (and
unsolvable) issues

Informs

T_ *
Assignment . Acess 2
(refornd) Operates == i)

View 371. Active/Passive is not a property, it is a consequence of

In my opinion, the most fundamental problem with Archi-
Mate is the split between active and passive in structure.
They weren’t thinking properly twenty-odd years ago,
principled (logical) ‘grammar thinking’ won out over ‘real-
istic thinking’

The problem is that active structure is often also passive
structure. If a human actor can act, it can also be acted-up-
on. In fact, the right definition for ‘active structure’ might
be ‘structure that acts’. It is not a fundamental property at
all, itis a matter of being assigned to behavior that turns
structure into active structure.

In View 371 there is an example:

Assignment
< (performs)

Patient

Assignment from structure to
behavior makes structure active.
Being acted upon (‘Accessed’),
makes structure passive. The
relations define what is the case
and that may be both.

ArchiMate is not alanguage, it
isa grammar. And grammatical
thinking (Uncle Ludwig again)
simply cannot catch reality (as
an enterprise architecture notation must).

This one, together with the BDAT ‘layering’ (I invite you

to read https://ea.rna.nl/2022/08/20/layering-is-it-real-
ly-a-useful-approach-in-business-it-enterprise-architec-
ture/), are so fundamental to ArchiMate that fixing them
isn’t really possible. You will have to define a new grammar.

35.12 Does ArchiMate have a future?

Everything goes extinct sometime. Even ArchiMate will.
ArchiMate could be better, but for the coming years the
market forces will make it difficult for something to estab-
lishitself.

The biggest issue | see for ArchiMate is that with the
world’s (digital) landscapes becoming more complex

and more volatile (elements appearing and disappearing
within seconds) over time, having a language that is visual
—asitisintended for human consumption — is becoming
more and more a problem. If we design — and we will, Al
won't do it for us for the forseeable future — we will design
patterns. And it it will be necessary to link these patterns
fleetingly to instances of those patterns. Automation

of our knowledge about the landscape will be inevita-

ble. Those kind of systems are already available and they
are not ArchiMate-based, nor can they really be. A more
fundamental grammar, based for instance on elements of
this discussion chapter, and potentially generative Al that
is able to create ‘good enough’ human-aesthetics-pleas-
ing representations. This is far off, | guess. And until then,
ArchiMate will have enough value in our design and docu-
mentation processes to not yet go extinct.

Mastering ArchiMate Edition 3.2

https://ea.rna.nl/2022/08/20/layering-is-it-really-a-useful-approach-in-business-it-enterprise-architecture/
https://ea.rna.nl/2022/08/20/layering-is-it-really-a-useful-approach-in-business-it-enterprise-architecture/
https://ea.rna.nl/2022/08/20/layering-is-it-really-a-useful-approach-in-business-it-enterprise-architecture/

