
Page 203

Discussing
ArchiM

ate

Discussing
ArchiMate
35. Proposed Improvements for ArchiMate 3.1

* With the exception of the somewhat slipshod version 3.0 which contained the better (though not yet fully complete) foundation, but also
many contradictions, omissions and glaring errors, such that it was technically unusable as it forbade even many foundational relations.

I might rightly be called a fanboy of ArchiMate, but that
doesn’t mean I am without criticism. I had a whole lot of
criticism on the ArchiMate 2.1 standard. Much of that has
ąeeś ǙǄeč Ĺś �ƋĆĴĹnaƟe 3 ΅ƟĴťƧgĴ śťƟ aŐƿaǅƓ Ɵť řǅ eǄaĆƟ
liking), but in general the ArchiMate 3 standard is much less
sloppy and much better put together than any previous
version*. It did mean that it was a lot of work coming up
with Edition III, as working around limitations in 2.1 and not
having improvements of version 3 turned out to have been
ĹśǚƧeśƟĹaŐ Ĺś ƟĴe ĆƋeaƟĹťś ťĬ ƟĴe ƈaƟƟeƋśƓ Ĺś ,čĹƟĹťś PPͳ ¶ĴĹƓ
has repeated itself with the ‘minor’ update from version
3.0.1 to version 3.1 and now 3.2.

35.1 Fragmentation of element types
The standard says:

The most important design restriction on the lan-
guage is that it has been explicitly designed to be as
small as possible

And while the standard has remained economical with rela-
ƟĹťśƓ ΅ťśŐǅ ƟĴe ĹśǚƧeśĆe ƋeŐaƟĹťś ĴaƓ ąeeś aččeč ƓĹśĆe ƟĴe
original report published in 2007, and relations are often
co-opted for distinct meanings), the same cannot be said
about element types. There has been a rather unchecked
growth, a doubling in fact, from the original ArchiMate
to version 3.2 today. Some of this is unavoidable as new
aspects and domains have been added, but not all. The new
aspects and domains have all brought their own separate
world to ArchiMate, and that is by definition questionable.
After all, all the elements that have been introduced are
part of the reality of an organization. Hence, in principle
they should in one way or another have to be part of what I
have called in Section 6 “An ArchiMate Map” on page 17
‘the enterprise itself’. Good examples of such overlaps are:

• The Assessment element from the Motivation aspect
represents something that has a real counterpart in the
organization, e.g. a report or even a mail message. As such,
ĹƟ ĹƓ a �ƧƓĹśeƓƓ {ąŉeĆƟ ƟĴaƟ ĹƓ ĆƋeaƟeč ΅�ĆĆeƓƓΆ ąǅ Ɠťře
sort of business behavior. The same can be said of other
eŐeřeśƟƓ ĬƋťř nťƟĹƾaƟĹťśʹ ƓƧĆĴ aƓ DťaŐʹ ¡eƊƧĹƋeřeśƟ΀
Constraint, Principle, Stakeholder and so forth. They
don’t exist in a universe outside the organization, they are
part and parcel of it;

• The Work Package from the Implementation and Mi-
gration layer is almost indistinguishable from a Business
Process. But it cannot use applications, nor can it Access
data or material;

• �śǅ �ƧƓĹśeƓƓ ¡ťŐe ĹƓ ąǅ čeǙśĹƟĹťś aŐƓť a ©ƟaōeĴťŐčeƋͳ �ƧƟ
ƿe ĆaśśťƟ řťčeŐ ĬťƋ ĹśƓƟaśĆe ťśe �ƧƓĹśeƓƓ ¡ťŐe PśǚƧeśĆ-
ing another.

View 356 on page 204 shows a few relations in red that
make a lot of sense, but that are not allowed. The blue
one is allowed since ArchiMate 3. The situation is actually
worse than it looks. The Motivation aspect uses a lot of As-
sociations as formal direct relations. The fact that Associa-
tion is allowed between all elements hides thus some of the
fragmentation because there is a loophole, i.e. I can Associ-
aƟe śťƟ ŉƧƓƟ a ©ƟaōeĴťŐčeƋ ƿĹƟĴ a DťaŐʹ P Ćaś aŐƓť �ƓƓťĆĹaƟe
a �ƧƓĹśeƓƓ ¡ťŐe ƿĹƟĴ ĹƟʹ ąƧƟ śťƟ ąeĆaƧƓe ƟĴe řeƟařťčeŐ
is particularly good, but because there is this general rule.
This is shown in green.

35.2 Remove historical baggage
¡eŐaƟeč Ɵť ƟĴĹƓ ĹƓ ƟĴe gƋťƿĹśg ařťƧśƟ ťĬ ĴĹƓƟťƋĹĆaŐ ąaggage
that ArchiMate carries. The designers are apparently very
careful to strive for maximum backward compatibility, but
the result is a situation that I would label as ‘technical debt’.

Page 204 Mastering ArchiMate Edition 3.2

A good exam-
ple is the As-
signment from
Device to Sys-
tem Software. When it
was introduced as part
of the original Archi-
Mate, System Software
was positioned as the
behavior of a Device.
That made it perfectly
logical to use Assign-
ment between the two
to model ‘perform-
Ĺśg ąeĴaƾĹťƋΡ ŉƧƓƟ aƓ
ąeƟƿeeś �ƧƓĹśeƓƓ ¡ťŐe
and Business Process
for example.

But in ArchiMate 2,
internal Technology
behavior (e.g. Tech-
nology Function) was
introduced to model the infrastructure behavior of infra-
structure active elements such as a Device (or any meta-
model-Specialization of Node). The old Assignment was
ōeƈƟ aśč ΅Ĺś ƈaƋƟ ĹřƈŐĹĆĹƟŐǅΆ ƋečeǙśeč aƓ ΠčeƈŐťǅřeśƟΡͳ �ƧƟ
not completely. For instance, if I add a special GPU card
to a PC, isn’t that deployment (from Device to Device)
too? I can deploy System Software on System Software.
Why can’t I deploy an Application Component on System
©ťĬƟƿaƋeͺ pťƟe͵ ĹĬ ƿe ĆĴaśge ƓťřeƟĴĹśg aąťƧƟ ¡eaŐĹǏaƟĹťś
and/or derivation, this could all be removed and become
derivable (see below).

And while I’m at it: a simple improvement would be to
rename System Software to Software Platform.

Location was added in ArchiMate 2 as a sort of special-
ized grouping without the generic Grouping we have
now. Then in ArchiMate 3 we got Facility and Grouping
as real elements. There is serious overlap between these
three. Would we have added Location to ArchiMate 3 if it
ĴačśΡƟ ąeeś aŐƋeačǅ Ĺś �ƋĆĴĹnaƟe ̵ ΅aƓ a ΠǙǄΡ ĬťƋ śťƟ ĴaƾĹśg
Grouping)?

¡eƈƋeƓeśƟaƟĹťś ĴaƓ ąeeś Ĺś �ƋĆĴĹnaƟe ĬƋťř ƟĴe ƓƟaƋƟʹ
mainly as a means to model printed information (the PDF
example has always overlapped with Artifact). Given that
ƿe śťƿ Ĵaƾe naƟeƋĹaŐ aƓ ƿeŐŐ aƓ �ƋƟĹĬaĆƟʹ ¡eƈƋeƓeśƟaƟĹťś
can go.

Path and Communication/Distribution Network may be
repositioned in a cleaner way as well. Why aren’t they
΅aąƓƟƋaĆƟΆ pťčeƓ ƿĴĹĆĴ ťǖeƋ ¶eĆĴśťŐťgǅ ©eƋƾĹĆeƓ ƟĴƋťƧgĴ
Technology Interfaces? Why do they ‘serve’ via Associa-
ƟĹťśƓͺ $ť ƿe ƋeaŐŐǅ śeeč ƟĴeřͺ Õe Ĵaƾe CŐťƿ͸

35.3 Issues with abstractions
There is in my view a many-pronged confusion in
ArchiMate over abstraction.

; ÕĴeś řƧŐƟĹƈŐe eŐeřeśƟƓ ¡eaŐĹǏe a ƓĹśgŐe ťƟĴeƋ eŐeřeśƟʹ ƟĴe ƿťƋč ΠĹčeśƟĹƟǅΡ ƋeƊƧĹƋeƓ aś eǄƈŐaśaƟĹťśͳ �ŐŐ ƟĴe ĹčeśƟĹƟĹeƓ ƟĴaƟ ¡eaŐĹǏe ƟĴe ƟaƋgeƟ
aƋe ƟťgeƟĴeƋ ƟĴe ťśe ĹčeśƟĹƟǅ ƟĴaƟ ĹƓ ¡eaŐĹǏečͳ Õe ƿĹŐŐ śťƟ Ɵaōe ƟĴťƓe ƓƧąƟŐeƟĹeƓ ĹśƟť ĆťśƓĹčeƋaƟĹťś Ĺś ƟĴe ƓƟťƋǅ aƓ ƟĴeǅ ťśŐǅ ĆťřƈŐĹĆaƟe ąƧƟ śťƟ
really change this analysis in a fundamental sense.

Section 7.17 “Abstractions” on page 31 already gave us
an overview of the many ways we can model abstractions
in ArchiMate. The standard adds to this in Section 3.6,
when it (amongst other things) also tells us that we may
use behavioral elements as abstractions as they are ‘imple-
mentation-independent’ (which then frankly is ignored in
the rest of the standard). Then we have the complicated
role of Specialization as described in Section 8.4 “Special-
ization in the Meta-model” on page 34 and Section 8.5
Ξ¶Ĵe ©ƈeĆĹaŐĹǏaƟĹťś ¡eŐaƟĹťś Ĺś aś �ĆƟƧaŐ nťčeŐΟ ťś ƈage
34.

Ignoring the — from the perspective of the rest of the
standard — confusing suggestion that the behavior of an
active element is an abstraction of the ‘implementation’
(instead of simply the behavior performed by the ‘acting
element’), and ignoring the issues surrounding Specializa-
tion, we are left with the following abstractions in Archi-
Mate:

• Identity*. When one element is an abstraction of another,
the two elements are both a representation of the same
thing aƟ a čĹǖeƋeśƟ ΠŐeƾeŐΡͳ Õe Ɠee ƟĴĹƓ Ĺś �ƋĆĴĹnaƟe aƓ ƟĴe
¶{D�C ŐťgĹĆaŐ΀ƈĴǅƓĹĆaŐ ¡eaŐĹǏaƟĹťśƓ ƿĹƟĴĹś ƟĴe aƈƈŐĹĆa-
ƟĹťś aśč ƟeĆĴśťŐťgǅ ŐaǅeƋͳ Õe aŐƓť Ɠee ƟĴĹƓ Ĺś ƟĴe ¡eaŐĹǏa-
ƟĹťśƓ ĬƋťř ƟĴe ƈaƓƓĹƾe eŐeřeśƟƓ ΅ƟĴe �ƧƓĹśeƓƓ {ąŉeĆƟ ťƋ
the Application Component or the System Software rep-
resents the same thing aƓ ƟĴe �ƋƟĹĬaĆƟʹ ŉƧƓƟ Ĺś a čĹǖeƋeśƟ
ŐaǅeƋ ťƋ aƓƈeĆƟΆͳ Õe aŐƓť Ɠee ƟĴĹƓ Ĺś ƟĴe ¡eaŐĹǏaƟĹťśƓ ťĬ
core interfaces and behavioral elements to other layers,
aśč ƿĴeś a $eŐĹƾeƋaąŐe ¡eaŐĹǏeƓ a ĆťƋe eŐeřeśƟͶ

• Creation. When one element is an abstraction of another
it means that one element creates another element that
does not represent the same thing. We see this when
ĹśƟeƋśaŐ ąeĴaƾĹťƋ ΅ĬƧśĆƟĹťśʹ ƈƋťĆeƓƓΆ ¡eaŐĹǏeƓ eǄƟeƋśaŐ
behavior (service — though I disagree too service is an
independent abstraction from internal behaviour, see
Section 35.4 “Service as Composite Part of Function/

OS v1
(System Software)

Assess Vulnerabilties
(Business Process)

OS v1 Distribution
(Artifact)

Potential Information Security
Breaches
(Driver)

Ensure IP Security
(Goal)

Plan Updates
(Business Process)

OS v2 Distribution
(Artifact)

[srv001]
(Device)

No IP Vulnerabilities
(Requirement)

[BU] ProcessName (Business
Process)Update Server

(Work package)

Updated Server
(Deliverable)

Old
(Plateau)

New
(Plateau)

GoalName
(Goal)

OS v2
(System Software)

Hidden
Vulnerabilities found in v1 of

OS
(Assessment)

Systems Engineer
(Business Role)hiddenTeam Coordinator

(Business Role)

not
allowed

not allowed

++

not
allowed

not allowed

++
not

allowed

'loophole' example

View 356. Various examples of real relations we cannot do in ArchiMate

 Page ̵̸̳Discussing ArchiMate

Process”)*ʹ ƿĴeś a ĆťƋe eŐeřeśƟ ¡eaŐĹǏeƓ
a ¡eƊƧĹƋeřeśƟʹ ťƋ ƿĴeś a ÕťƋō PaĆōage
¡eaŐĹǏeƓ a $eŐĹƾeƋaąŐe ťƋ a ĆťƋe eŐeřeśƟͶ

• Collectionͳ ¶Ĵe ¡eaŐĹǏaƟĹťś ťĬ ©ƟƋaƟegǅ
elements is harder to pin down. Close to
Identity: it can be experienced as collec-
ƟĹťśƓ ťĬ a ƓťƋƟ ťĬ ƟĴe eŐeřeśƟƓ ƟĴaƟ ¡eaŐĹǏe
them. Note: currently, Aggregation is used
to create a network or path from under-
lying infrastructure. It is quite enticing to
see Path and Network as abstractions of
that underlying infrastructure.

PƟ ĹƓ ĆťśĬƧƓĹśg ƟĴaƟ ¡eaŐĹǏaƟĹťś ĹƓ ƧƓeč ĬťƋ
non-Identity abstractions. If something pas-
sive is created, the Access relation is more
appropriate. If an active element creates
behavior, we have Assignment. If we are
collecting/grouping something, Aggregation
is more appropriate.

35.4 Service as Composite Part of Func-
tion/Process
There are two views of what a service is.

One is that the service is visible behavior that is strongly
coupled to the invisible behavior. E.g. if you describe a sell-
ing process that creates a service which is used by a buyer,
all the behavior that is visible to the buyer is an inseparable
part of the process (and its description). It is not only part
of the service, it is at the same time part of the process
and the service is seen as the (visible) Composite part of
the process. This, we could call the ‘constructionist view’
of a service.

The other is that a service provides some value to the envi-
ronment and that it is an abstraction from the nitty-gritty
details of the internal behavior (e.g. a function). In other
words, some people want to see a service as an abstrac-
tion that is weakly coupled to the (independent) internal
ąeĴaƾĹťƋͳ CťƋ ƟĴeřʹ ƟĴe ƓeƋƾĹĆe ĹƓ čĹƓŉƧśĆƟ ĬƋťř aśč ĹƓ inde-
pendent behavior, for instance because the actual service
delivery requires the behavior of the service consumer to
succeed†. This we could call the ‘abstractionist’ view of a
service.

In the ArchiMate metamodel,
the view is mixed: abstrac-
tionist on the side of the
service and constructionist
on the side of the interface, as
can also be seen in the basic
pattern of View 357.

¶Ĵe ĆťśƓƟƋƧĆƟĹťśĹƓƟ ƾĹeƿ ǙƟƓ
reality better in my opinion. Suppose, for instance, you
Ĵaƾe a �ƧƓĹśeƓƓ PƋťĆeƓƓ ƟĴaƟ ¡eaŐĹǏeƓ a ©eƋƾĹĆe Δ Ɠaǅ a
©eŐŐ a dƧggage PśƓƧƋaśĆe �ƧƓĹśeƓƓ PƋťĆeƓƓ ƟĴaƟ ¡eaŐĹǏeƓ a
Luggage Selling Business Service which Serves a Luggage
* Though I know from private communication that seeing service as independent from ‘internal’ behavior (based on the idea that a service
is a sort of ‘interaction’ that cannot be seen independent from the behavior of the service consumer) was the view of (some of) the original
ArchiMate designers, it can nowhere be found in the text of ArchiMate, from the original document to today. See also Section 35.4.
† A rather transactional view. There are clearly services that can exist without anyone consuming them, such as broadcasts. See also the
footnote on page 205

Insurance Customer — the behavior that the Luggage In-
surance Customer actually uses must be part of the Sell a
Luggage Insurance Business Process. It cannot be other-
wise. There exists no behavior that Serves the customer
that is not performed by the seller as part of a Business
Process. Suppose at some point in the Sell a Luggage
Insurance Business Process the contract is presented to
ƟĴe ĆƧƓƟťřeƋͳ ¶ĴĹƓ ĹƓ čeǙśĹƟeŐǅ ƈaƋƟ ťĬ ƿĴaƟ ƟĴe ĆƧƓƟťřeƋ
eǄƈeƋĹeśĆeƓʹ ĹƟ ĹƓ ΠeǄƈťƓečΡ ąeĴaƾĹťƋʹ ąƧƟ ĹƟ ĹƓ čeǙśĹƟeŐǅ
also part of the ‘internal’ behavior, because it is part of the
process. Or have a look at View 358, which shows in BPMN
how the visible/exposed behavior cannot be anything but
part of the service provider’s process.

Pś ťƟĴeƋ ƿťƋčƓ͵ ƟĴe ĹśƓƧƋaśĆe ƓeŐŐeƋΡƓ ΠťǖeƋ ƟĴe ĆťśƟƋaĆƟ
for signing’ activity is both part of its process but also a
part that is externally visible/usable, that is exposed. It is
the same activity, not something independent. Looking
at it as something independent introduces an abstraction
ƟĴaƟ řaōeƓ ŐĹĬe řťƋe čĹǗĆƧŐƟʹ śťƟ eaƓĹeƋͳ �ĬƟeƋ aŐŐʹ ƿe řƧƓƟ
remember AI’s old adagium: the best model of the world is
the world itself.

Important to note for this is that I am not talking about
modeling the nitty gritty details, even if my argument to

řaōe ƟĴe ƓƈŐĹƟ čĹǖeƋeśƟ ƓƟeřƓ
from the analysis that the
‘external’ (detailed) behavior
must be part of the ‘internal’
(detailed) behavior. Both the
internal behavior (e.g. process)
and the external behavior
(service) may be abstract in
your model. After all, the fact

that, e.g., Business Process and Business Function are
hidden from the outside world does not mean they must
be detailed. We think in ‘hiding the details’ but in Enter-
prise Architecture models you will not want to see some-

(Application Component)(Application Function)

(Application Service)

(Data Object)

(Application Interface)

View 357. The Basic Application Pattern

Co
m
pl
et
e
Fl
or
ist

Pr
oc
es
s

Cu
st
om

er
Pr
oc
es
s

Fl
or
al
Ar
ra
ng
er

(In
ba

ck
of
fic
e,
no
t

vis
ib
le
fo
rc
us
to
m
er
)

Sa
les

(in
sh
op
,v
isi
bl
ef
or

cu
sto

m
er
)

Create
Bouquet

Get paid and
Deliver

Start event Customer
leaves

Get Order

Order Bouquet

Vi
sib

le
pa
rt
of
th
e

pr
oc
es
s

En
tir
e
pr
oc
es
s

Gr
ee
tin
gPaym

ent

Greeting

W
ha
ta
re
th
e
re
qu
ire
m
en
ts?

Requirem
ents

Bo
uq
ue
t

View 358. Selling Flowers. Exposed behavior is part of the total process.

Page 206 Mastering ArchiMate Edition 3.2

thing like the process details anyway. For that, we have
languages like BPMN. The Business Service is always an
abstraction of actual behavior, but so is a Business Process
in ArchiMate.

Hence, from a constructionist view, the external behavior
must be a part ťĬ ƟĴe ĹśƟeƋśaŐ ąeĴaƾĹťƋʹ ŉƧƓƟ aƓ ƟĴe eǄƟeƋ-
nal interface already is a Composite part of the Node,
�ƧƓĹśeƓƓ ¡ťŐe ťƋ �ƈƈŐĹĆaƟĹťś �ťřƈťśeśƟʹ ťǖeƋĹśg ƟĴaƟ
interface to the outside world. In other words: from a con-
structionist view we have ‘behavior’ and ‘external behav-
ior’ which is part of ‘behavior’ and the obvious relation is a
Composition.

Pś ƟĴe ťƋĹgĹśaŐ �ƋĆĴĹnaƟeʹ ƟĴeƋe ƿaƓ śť ¡eƊƧĹƋeřeśƟ eŐe-
ment type. Given the importance of the service consumer,
it was logical the requirement side ended up (informally)
inside the service concept. When thinking along the lines
of ‘business requirements drive ser-
ƾĹĆe čeǙśĹƟĹťśΡ Δ ĴeśĆeʹ ťƧƟƓĹčeΑĹś Δ
service also got a role as the ‘require-
ment/value’ side, the side that has to
do with the consumer. On the inter-
face side, this thinking was mirrored
in ‘required/provided’ interfaces (an
aspect already removed from Archi-
Mate).

But now that ArchiMate has the
Motivation Extension to cover the
requirement side, I think that we
have the means to make a clean cut:
ƟĴe ¡eƊƧĹƋeřeśƟ ĆťśĆeƈƟ ĬƋťř ƟĴe
Motivation Extension covers the
‘requirement/value’ side and we can
see the service itself — cleanly — as the ‘externally usable
(‘exposed’ as ArchiMate itself now puts it) part’ of the
provider’s behavior (which has a meaning for the envi-
ƋťśřeśƟΆͳ Pś ĬaĆƟʹ ĹƟ ĴaƓ ąeeś ťƋĹgĹśaŐŐǅ čeǙśeč ƟĴaƟ ƿaǅ
by the ArchiMate designers. The standard says about the
generic ‘service’ concept:

An external behavior element, called a service, rep-
resents an explicitly defined exposed behavior.

The standard explains:

Thus, a service is the externally visible behavior
of the providing system, from the perspective of
systems that use that service; the environment con-
sists of everything outside this providing system.
[...] For the users, only this exposed behavior and
value, together with non-functional aspects such
as the quality of service, costs, etc., are relevant.
These can be specified in a contract or Service Level
Agreement (SLA). Services are accessible through
interfaces.

The point I am making can be summarized as:

• the service is behavior and all behavior of the performer
(the process) is an integral whole of which the ‘exposed’
is a part;

; ÕĴĹĆĴ ąeĬťƋe ĴaƓ ąeeś čeǙśeč aƓ͵ Ξ� ƓeƋƾĹĆe ĹƓ čeǙśeč aƓ a ƧśĹƟ ťĬ ĬƧśĆƟĹťśaŐĹƟǅ ƟĴaƟ a ƓǅƓƟeř eǄƈťƓeƓ Ɵť ĹƟƓ eśƾĹƋťśřeśƟʹ ƿĴĹŐe ĴĹčĹśg
internal operations, which provides a certain value (monetary or otherwise)”.

• the fact that you can (and probably should) design a
service independently does not mean it should exist
independently.

PśƟeƋeƓƟĹśgŐǅͳ ¶Ĵe čeǙśĹƟĹťśƓ Ĺś �ƋĆĴĹnaƟe 3 Ĵaƾe ĆĴaśgeč
from ArchiMate 2 and now support a ‘service as exposed
part of behavior’ very well. E.g. for Business Service:

• ArchiMate 2͵ � ąƧƓĹśeƓƓ ƓeƋƾĹĆe ĹƓ čeǙśeč aƓ a ƓeƋƾĹĆe*
ƟĴaƟ ĬƧŐǙŐŐƓ a ąƧƓĹśeƓƓ śeeč ĬťƋ a ĆƧƓƟťřeƋ ΅ĹśƟeƋśaŐ ťƋ
external to the organization).

• ArchiMate 3: A business service represents an explicitly
čeǙśeč eǄƈťƓeč ąƧƓĹśeƓƓ ąeĴaƾĹťƋͳ

Instead of the need and the customer, we now only have
the explicit mention that it is ‘exposed’ behavior Note: ‘ex-
posed’ does imply that it is behavior solely by the ‘exposer’.

The structure surrounding the ser-
vice concept then becomes like View
359 (example at business layer level),
where the service is a Composite part
of the function. Using the Motiva-
ƟĹťś ,ǄƟeśƓĹťśʹ ƟĴe ƓeƋƾĹĆe ¡eaŐĹǏeƓ
a ¡eƊƧĹƋeřeśƟ ƿĴĹĆĴ ĹƓ �ƓƓťĆĹaƟeč
with a Value. This more or less states
that the Value is only there when the
¡eƊƧĹƋeřeśƟ ĴaƓ ąeeś ¡eaŐĹǏečʹ ƿĴĹĆĴ
is kind of nice.

ArchiMate 3 has dropped Association
from the set of relations for which
derivation rules exist. It would how-
ever be nice if some sort of derivation
with Association would remain pos-

sible as long as the relation also plays a role in the actual
metamodel. Hence, I’ve kept it in the example in View 359
to show what would be nice derived relations. Together
the two orange relations would allow the derivation of
the red Association linking Business Service to Value. And
as Business Service A can be used by Business Function B,
the red Association and the green Serving could be used
to derive the blue Association. In other words: Business
Function B has an association with the Value (because that
Value is there when Business Function B uses Business
Service A. I am not yet certain whether I want that deriva-
tion both with structural and dependency relations.

I too suspect that in the behavioral column, it has been
more natural to talk about a service as being ‘created’
(the ‘second’ type of realization in Section 35.3 “Issues
with abstractions” on page 204) because the behavioral
column is all about ‘doing’ and ‘creating’ is a verb. In the
active structure column, it could only be sensibly seen as
an interface being ‘part of’ an Application Component or
pťče ťƋ �ƧƓĹśeƓƓ ¡ťŐeͳ �ƧƟ ĹƟ ƿťƋōƓ aƓ ƿeŐŐ ΅eƾeś ąeƟƟeƋΆ
ĹĬ ƿe ŉƧƓƟ Ɠee ƟĴe ƓeƋƾĹĆe aƓ a ΅ƧƓaąŐeΆ ƈaƋƟ ťĬ ƟĴe ĬƧśĆƟĹťśʹ
ŉƧƓƟ ŐĹōe ƟĴe ĹśƟeƋĬaĆe ĹƓ a ΅ƧƓaąŐeΆ ƈaƋƟ ťĬ ƟĴe ƋťŐe΀Ćťřƈť-
nent/node. Not external/internal division but exposed/
visible versus ‘everything’.

�ĴaśgĹśg ƟĴe ¡eaŐĹǏaƟĹťś ƋeŐaƟĹťś ΅ąeƟƿeeś ĬƧśĆƟĹťś΀ƈƋť-
cess and the service it provides) to a Composition relation
aŐƓť ƋeřťƾeƓ ƟĴe ƧśśeĆeƓƓaƋǅ čĹǖeƋeśĆe ąeƟƿeeś ƟĴe

Business Function A

Business Service A Business Function B

Requirement

Value

derived

derived

View 359. Constructionist Interpretation of Service,
Combined with Motivation Extension Requirement

 Page ̵̳̺Discussing ArchiMate

behavioral column and the active structure column. The
result looks like View 360.

¶ĴĹƓ aŐƓť ĴaƓ ƟĴe eǖeĆƟ ƟĴaƟ Δ ƧƓĹśg ƟĴe ĆƧƋƋeśƟ čeƋĹƾaƟĹťś
rules — the derived relation between an active element and
its service is always Assigned-To, it no longer depends on
the route taken, which is also kind of nice.

35.5 Automated Processes
In Edition II of Mastering ArchiMate, I proposed a few
ĆĴaśgeƓͳ {śe ťĬ ƟĴeƓe ƿaƓ Ɵť ƧƓe ΅ĹčeśƟĹƟǅΑΆ¡eaŐĹǏaƟĹťśƓ
to model automated processes. The idea was that ap-
ƈŐĹĆaƟĹťś ΅aśč ƟeĆĴśťŐťgǅΆ ŐaǅeƋ ƿťƧŐč ąe aąŐe Ɵť ¡eaŐ-
ize representations of themselves in higher layers. This
would make it possible to better combine automated and
non-automated elements of your landscape in a single
ƓƟƋƧĆƟƧƋeͳ �ǅ ĴaƾĹśg aś �ƈƈŐĹĆaƟĹťś �ťřƈťśeśƟ ¡eaŐĹǏe a
΅ƋťąťƟĹĆΆ �ƧƓĹśeƓƓ ¡ťŐeʹ ƟĴe ΅ƋťąťƟĹĆΆ �ƧƓĹśeƓƓ ¡ťŐe ĆťƧŐč
ąe řťčeŐeč aƓ a ĬƧŐŐΑǚečgeč ąƧƓĹśeƓƓ eśƟĹƟǅ ƟťgeƟĴeƋ ƿĹƟĴ
the humans. The proposal can be seen in View 361. This

is the ‘automated process’ version of View 360. They are
the ‘service-is-part-of-behavior’ metamodel suggestions
of ArchiMate’s two ways of looking at layering (See 12.10
“Layering Ambiguity” on page 53).

pťƿʹ �ƋĆĴĹnaƟe 3 ĆťřeƓ ƿĹƟĴ ƟĴe ƟĴƋee ťƋaśge ¡eaŐĹ-
zations, but not with the red one. It also has added the

same pattern to the metamodel between Technology on
the one hand and Application and Business layers on the
ťƟĴeƋͳ ©ƧččeśŐǅʹ ƟĴe ΠĹčeśƟĹƟǅΑ¡eŐaƟĹťśƓΡ ΅Ɠee ©eĆƟĹťś 12.10
“Layering Ambiguity” on page 53) have become center
stage.

PΡř śťƟ ǅeƟ ƊƧĹƟe Ĵaƈƈǅ ƿĹƟĴ ƟĴĹƓͳ ÕĴaƟ P ŐĹōe ĹƓ ƟĴe ǚeǄĹ-
ąĹŐĹƟǅ ĹƟ gĹƾeƓ ǅťƧ Ɵť Ĵaƾe ŐťƿeƋ ŐaǅeƋ eŐeřeśƟƓ ƈŐaǅ a ǙƋƓƟ
class citizen’s role in the business layer. What I don’t like
is the fact that the derivation of an Assignment (e.g. from
Node to Technology Process) followed by an identityΑ¡e-
alization (e.g. from Technology Function to Business
CƧśĆƟĹťśΆ čeƋĹƾeƓ ĹśƟť a ¡eaŐĹǏaƟĹťśͳ ¶ĴeƋe aƋe Ɵƿť řaŉťƋ
problems with this.

¶Ĵe ǙƋƓƟ ĹƓ ƟĴaƟ ƟĴe ¡eaŐĹǏaƟĹťś ĬƋťř pťče Ɵť ąƧƓĹśeƓƓ
behavior misleadingly suggests that the Business Process
is an abstraction of the Node. The second is related to
this but more practical. Take the semi-automated process
in View 362. The marketeers prepare a mailing, the big

printer system prints it and the transport people ship it.
In ArchiMate 3, we can add the Print Mailing (Business
PƋťĆeƓƓΆ aśč ŐeƟ ĹƟ ąe ΅ĹčeśƟĹƟǅΑΆ¡eaŐĹǏeč ąǅ ƟĴe ¶eĆĴśťŐ-
ogy Process that is performed by BigPrinter’s software.
Now, you might not want the intermediate clutter and the
nice thing is of course that you don’t need it. It is perfectly
all right to model the System Software to perform that
automated business process. The derivation of the (violet)
�ƓƓĹgśřeśƟ aśč ƟĴe ΅ƋečΆ ¡eaŐĹǏaƟĹťś ĹƓ ƟĴe ΅ąŐƧeΆ ¡eaŐĹǏa-
tion. So, our diagram becomes View 363:

So far so good, but these three Business Processes are not
full end-to-end processes. They are mere steps, sub-pro-
cesses, in the whole. If we add the whole we get View 364.

[AppName]
FunctionName

(Application Function)

[AppName]
InterfaceName

(Application Interface)

[AppName]
ComponentName

(Application Component)

[BU]
ServiceName

(Business Service)

[BU]
ProcessName

(Business Process)

[AppName]
ServiceName

(Application Service)

[BU]
RoleName

(Business Role)

[BU]
Name

(Business Actor)

[BU]
InterfaceName

(Business Interface)

View 360. Proposal: A service is the Composite usable part of a
Function

[AppName]
FunctionName

(Application Function)

[AppName]
InterfaceName

(Application Interface)

[AppName]
ComponentName

(Application Component)

[BU]
ServiceName

(Business Service)

[BU]
ProcessName

(Business Process)

[BU]
Ro�oticRoleName
(Business Role)

[BU]
Ro�oticInterfaceName
(Business Interface)

[AppName]
ServiceName

(Application Service)

View 361. Proposed meta-model Realization rela-
tions for automated processes

�Bi��rinter�
�rint So�t are

�S!stem So�t are�

�Bi��rinter�
�rint a Batc"

�#ec"nolo�! �rocess�

�$ar%etin��
�reate $ailin�

�Business �rocess�

�Facilties�
�rint $ailin�

�Business �rocess�

�#rans�ort�
S"i� $ailin�

�Business �rocess�

$ar%eteer
�Business Role�

#rans�orter
�Business Role�

�er�ormin�

id
en
tit
!

creation �derived�

View 362. Technology performing business behavior

�Bi��rinter�
�rint So�t are

�S!stem So�t are�

�Facilties�
�rint $ailin�

�Business �rocess�

#rans�orter
�Business Role�

�#rans�ort�
S"i� $ailin�

�Business �rocess�

�$ar%etin��
�reate $ailin�

�Business �rocess�

$ar%eteer
�Business Role�

View 363. View 362 with the technology behavior left out

�Bi��rinter�
�rint So�t are

�S!stem So�t are�
#rans�orter

�Business Role�
$ar%eteer

�Business Role�

Send $ailin� �Business �rocess�

�Facilties�
�rint $ailin�

�Business �rocess�

�#rans�ort�
S"i� $ailin�

�Business �rocess�

�$ar%etin��
�reate $ailin�

�Business �rocess�

View 364. The process steps of View 363 Aggregated in an overall parent
process

Page 208 Mastering ArchiMate Edition 3.2

Now, suppose we want to get an ever simpler, more ab-
stracted, diagram. We are aƋĆĴĹƟeĆƟƓʹ aĬƟeƋ aŐŐͳ Õe ŉƧƓƟ ƿaśƟ
to show the overall Business Process and who performs it.
We can do that as shown in View 365:

Sadly though, we can’t. Because we are not allowed to
Ĵaƾe čĹǖeƋeśƟ ƟǅƈeƓ ťĬ ƋeŐaƟĹťśƓ ťś a _ƧśĆƟĹťśͳ �śč ƟĴaƟ ĹƓ
a wise constraint of ArchiMate because it would be totally
ƧśčeǙśeč ƿĴaƟ a _ƧśĆƟĹťś řeaśƓ ĹĬ ĹƟ ƿaƓ aŐŐťƿečͳ

The problem can be easily solved as per the suggestion in
the next section:

35.6 Changing the Strength of Assign-
ment and Realization
The strength order of structural relations was decided
upon, but I have no documentation of why that particu-
lar order was chosen and privately I have been told it was
more intuitively decided than reasoned. Part of it may
have been the result of the ‘abstractionist’ (weakly cou-
pled) view on the service concept.

ÕĴaƟ ĴaƈƈeśƓ ĹĬ ƿe ƓƿĹƟĆĴ �ƓƓĹgśřeśƟ aśč ¡eaŐĹǏaƟĹťś Ĺś
the strength table for deriving structural relations? If we
start in the middle of the ArchiMate meta model, the basic
Application Pattern (see View 357 on page 205), the
derived relation of the route from Application Component
via Application Function to Application Service changes
ĬƋťř ¡eaŐĹǏaƟĹťś Ɵť �ƓƓĹgśřeśƟͳ PśĆĹčeśƟaŐŐǅʹ ƟĴaƟ ĹƓ ƟĴe
same result that we get if we follow the route from Appli-
cation Component via Application Interface to Applica-
tion Service.

¶ĴĹƓ ĹƓ ōĹśč ťĬ śĹĆe Ĺś Ɵƿť ƿaǅƓ͵ ǙƋƓƟʹ ąeĆaƧƓe ƟĴe čeƋĹƾeč
result does not depend on which route you take. But
secondly, because it is kind of nice to have Assignment as
the resulting relation between an active component and a
behavioral component. It means that you never break the
pattern that an active element is Assigned-To a behavioral
element. And that is a much more direct statement about
your landscape (who does what) than the fuzz that the
architect’s abstractions bring.

In the real ArchiMate meta-model, the derived relation
ĬƋťř pťčeʹ ƾĹa �ƓƓĹgśečΑ¶ť Ɵť �ƋƟĹĬaĆƟʹ ƾĹa ¡eaŐĹǏaƟĹťś
Ɵť $aƟa {ąŉeĆƟ aśč ƾĹa ¡eaŐĹǏaƟĹťś Ɵť �ƧƓĹśeƓƓ {ąŉeĆƟ ĹƓ
¡eaŐĹǏaƟĹťśͳ PĬ ƿe ƓƿĹƟĆĴ ƓƟƋeśgƟĴƓ ťĬ �ƓƓĹgśřeśƟ aśč ¡e-
alization, the resulting relation would become Assigned-To
in its meaning of ‘resides on’. In other words the Node is
�ƓƓĹgśečΑ¶ť ƟĴe �ƧƓĹśeƓƓ {ąŉeĆƟʹ ťƋʹ ƟĴe �ƧƓĹśeƓƓ {ąŉeĆƟ
resides on the Node, which is I think a slightly cleaner way
ťĬ ŐťťōĹśg aƟ ĹƟ ƟĴaś ƟĴaƟ ƟĴe �ƧƓĹśeƓƓ {ąŉeĆƟ ĹƓ Πaś aą-
straction’ of the Node.

When we change these strengths, the derived relation of
Ξ$eƾĹĆe �ƓƓĹgśečΑ¶ť �ƋƟĹĬaĆƟ ¡eaŐĹǏeƓ ©ǅƓƟeř ©ťĬƟƿaƋeΟʹ
becomes Assignment, which is also the direct relation
that still exists in the metamodel, which can then safely be
removed cleaning up the baggage of the past.

�śťƟĴeƋ eǖeĆƟ ĹƓ ƟĴaƟ ©ǅƓƟeř ©ťĬƟƿaƋe ƟĴaƟ ĹƓ �Ɠ-
ƓĹgśečΑ¶ť �ƋƟĹĬaĆƟ ƟĴaƟ ¡eaŐĹǏeƓ aś �ƈƈŐĹĆaƟĹťś �ťřƈť-
nent becomes a derived Assignment. We nicely get that
�ƈƈŐĹĆaƟĹťś �ťřƈťśeśƟ Δ ŉƧƓƟ ŐĹōe ©ǅƓƟeř ©ťĬƟƿaƋe Δ Ćaś
be deployed on System Software. As is the fact in the real
world.

Pś ĬaĆƟʹ P ƿťƧŐč ŐĹōe Ɵť Ɠee ƟĴe ΅ĹčeśƟĹƟǅΑΆ¡eaŐĹǏaƟĹťś ƋeŐa-
tion become the strongest relation of them all. This makes
a lot of sense. After all, what the identity-abstraction says
is that both ends
of the relation are
ƟĴe Ɠaře ƟĴĹśgʹ ŉƧƓƟ
čĹǖeƋeśƟŐǅ ƋeƈƋe-
sented. So for me,
when someone wants
to model TOGAF’s
logical Architecture
Building Block and
Solution Building
Block, it makes sense
that View 366 can
turn into View 367.

35.7 Make Access multi-directional
ArchiMate 2.0 removed the bi-directionality of the As-
signment relation that existed in ArchiMate 1, and that
was a good move. That bi-directionality in ArchiMate 1
led to all kinds of senseless derived relations. ArchiMate
2.0 removed all of those and added the ones that were no
longer derivable and that made sense explicitly to the core
meta-model.

So, why propose now to make another relation bidi-
rectional? Well, what drives this is a reality, namely that
Behavior may depend on passive elements, and not only
the other way around. A good example is application
maintenance from 18.6 “Secondary Architecture: Appli-
cation Maintenance” on page 106. Here, the application
řaĹśƟeśaśĆe ƈƋťĆeƓƓ ečĹƟƓ a ǙŐeʹ Ɠaǅ aś ΠͳΡĹśĹΡΡ ǙŐeʹ ƟĴaƟ
ĹśǚƧeśĆeƓ aś aƈƈŐĹĆaƟĹťśΡƓ ĬƧśĆƟĹťśaŐĹƟǅͳ ¶Ĵe aƈƈŐĹĆaƟĹťśΡƓ
ĬƧśĆƟĹťśaŐĹƟǅ ĹƓ čeƈeśčeśƟ ťś ƟĴe ƓeƟƟĹśgƓ Ĺś ƟĴe ǙŐe ΅ťś
ƟĴe Π©eƟƟĹśgƓΡ $aƟa {ąŉeĆƟ ƟĴe �ƋƟĹĬaĆƟ ƋeaŐĹǏeƓΆͳ ¶ĴťƧgĴ
ƟĴe �ƋƟĹĬaĆƟ ĹƓ ƓĴaƋečʹ ƟĴe $aƟa {ąŉeĆƟ ĹƓśΡƟʹ ƿĴĹĆĴ ƓĴťƿƓ
up when you make errors in that ini and the application
crashes.

Actually, I think it is best to make the direction of the Ac-
cess relation depend on its ‘read/write’ status:

• ¡eač �ĆĆeƓƓ͵ čĹƋeĆƟĹťś ĬƋťř ƈaƓƓĹƾe ƓƟƋƧĆƟƧƋe Ɵť ąeĴaƾ-
ior;

• Write Access (including Create and Delete): direction
from behavior to passive structure;

• �ťƟĴ Ƌeač aśč ƿƋĹƟe �ĆĆeƓƓʹ ťƋ ƧśčeǙśeč͵ ąĹčĹƋeĆƟĹťśaŐͳ

To illustrate what derived relations we can have when Ac-
cess becomes bidirectional, have a look at View 368.

Accountin� Arc"itecture
Buildin� Bloc%

�A��lication �om�onent�

SA� Solution Buildin�
Bloc%

�A��lication �om�onent�

Accountin�
�A��lication Function�

View 366. TOGAF ABB and SBB

SA� Solution Buildin�
Bloc%

�A��lication �om�onent�
Accountin�

�A��lication Function�

View 367. Derivation from View 366

�Bi��rinter�
�rint So�t are

�S!stem So�t are�
#rans�orter

�Business Role�
$ar%eteer

�Business Role�

Send $ailin�
�Business �rocess�

View 365. Modeling how people and automation together
perform the semi-automated process of View 364

 Page ̵̳̼Discussing ArchiMate

The violet and blue
Access relations
are the original
ones. Under the
ArchiMate 3.0.1
rules, none of the
other Access rela-
tions are derivable,
because the Access
relations runs from
behavior to pas-
sive. However, if we use the multi-directional approach,
the green Access relation becomes derivable from the blue
Access and Serving relations. But now we also can derive
the red Access relations and that is what we do not want.
Luckily, the standard limits (in Appendix B) the derivation
of Access to end-situations where one side is a passive
element. This could be made bidirectional. Note that if we
ŐĹřĹƟ ¡eaŐĹǏaƟĹťś Ɵť ƟĴe ΠĹčeśƟĹƟǅΡ ƋťŐe aśč ƿe ƓƟaƋƟ ƧƓĹśg
the Access relation for the ‘creation’ role, the situation
becomes more complex and the ArchiMate designers need
to solve a more complex puzzle.

35.8 Allow two-way Flows and Triggers
This one is easy. Two way Flows and Triggers would be a
ƾeƋǅ eaƓǅ aśč eǗĆĹeśƟ ƿaǅ Ɵť řťčeŐ Ɵƿť ƿaǅ čǅśařĹĆ
interactions. Especially for Flows — and certainly at a high-
er abstraction level — communication is often two-way.
Having to model two separate Flow relations for that is a
bore. This could even be solved by allowing in the standard
the use of a two-way form to represent under water two
separate relations.

35.9 Allow Serving to other relations
In section̵̷ͳ̷ Ξ¡ťƧƟĹśg aśč {ƋĆĴeƓƟƋaƟĹśg nĹččŐeƿaƋe
(ESB and APIs)” on page 129 we encountered the
diagram repeated here in View 369. I modeled that some
service — in this case a Technology Service — was instru-
mental in
making a
Flow pos-
sible. What
I wanted
to do is use
Serving for
that, but
that is not
allowed.
So I used a
directed Association. But if you think about it, the Flow is
a kind of a shorthand for behavior. Structurally, we would
let the Technology Service Serve the Sales and Inventory
Management functions. But Serving the Flow is much
more precise.

There are many more changes that I think could be made,
but these are more radical. I even have some radical
enough ideas that — were they implemented — we would
have to say that it is really a new language and a new ap-
proach to modeling.

Having said that, even within the context of ArchiMate,
we could do some pretty radical things that increase the
power of the language, while enabling options to simplify
other parts. I’m not going to write this all down here in
detail, but I would like to illustrate some by providing you
with a single example. Take a look at View 370. This view,
ƿĴĹĆĴ Δ ŐeƟΡƓ ƋeřĹśč ƈeťƈŐe ƿĴť aƋe ŐeaǙśg ƟĴƋťƧgĴ ƟĴe

book and starting at random somewhere — is absolutely
not valid ArchiMate at the moment contains the following
patterns:

• The two-way Flow as mentioned in section 35.8 “Allow
two-way Flows and Triggers”;

• Letting external behavior Serve Flows and Triggers as
mentioned in 35.9 “Allow Serving to other relations”. If
we could do that, the one shown in the diagram would be
derivable;

• Attaching Flows to other Flows to build actual communi-
cation patterns. E.g., by extending this, one could model
ąƧƓeƓ ťƋ ĴƧąƓͳ KeƋe ƓĴťƿś aƓ ŉƧƓƟ aƟƟaĆĴĹśg ǚťƿƓ Ɵť
ǚťƿƓʹ ąƧƟ Ĺś ĆƧƋƋeśƟ �ƋĆĴĹnaƟe ƿe ĆťƧŐč aŐƋeačǅ čť ƟĴĹƓ
by having a central hub (a Junction) and let all the Flows
be spokes. In that case, however, we should be able to
Serve the Junctions instead;

• Let a Serving relation Access passive structure. The rea-
soning is this: by looking at Serving as being an extension
of what external behavior/structure is we could connect
the payloads involved. Note, we can already do this with
Association;

• deƟ ©eƋƾĹśg ¡eŐaƟĹťśƓ ąe ©eƋƾeč Ĺś ƟƧƋśͳ ¶ĴĹƓ ĆťƧŐč aŐƓť
be derivable by making an outgoing Serving relation of an
element be able to inherit an incoming Serving relation
to that same element. But a direct relation is more useful:
it is clear that this structural relation depends on another
structural relation.

You could make the same arguments about for instance
Serving being allowed to Serve all structural relations. E.g.
a certain service enables that a certain active element is
Assigned to a behavior element. That would be modeled
by a Serving relation from the enabler to the Assignment
in question. It would also make the Communication and
Path elements prime candidates for a more abstract role
in the Business Layer (as Specializations of Actor?) as we

hidden
hidden

hidden

File Share
(Infrastructure Service)

File
(Artifact)

Read-only File Share
(Technology Service)

[System Y]
(Application Function)

we
do
notwantthese

View 368. Multi-directional Access derivation

Order
(Business Object)

[Sales System]
Sales

(Application Function)

[Tibco]
Order Topic Routing
(Technology Service)

[Accounting System]
Order Management
(Application Function)

[Warehousing System]
Inventory Management
(Application Function)

View 369. The ESB as infrastructure ‘Realizing’ the Flows

Layer 2 Fabric
(«Switch» Node)

[My Business]
Some Automation A
(Application Function)

Topic
(Business Object)

Layer 3 Routes
(«Router» Node)

[My Business]
Some Automation B
(Application Function)

[MyBusiness]
Orchestration and
Communication

(Application Function)

[My Business]
Some Automation C
(Application Function)

Zone Z
(«Network» Node)

View 370. Some rather radical ideas

Page 210 Mastering ArchiMate Edition 3.2

could do the technical side with normal technical ele-
ments).

35.10 Why change ArchiMate?
I think ArchiMate is great. It is the best thing since sliced
bread for Enterprise Architecture modeling. The language
is not strictly formal, but its concepts and relations have
been selected for usability, and as Uncle Ludwig explained
to us, that it one of the best tests of meaningfulness.

The world of Enterprise Architecture stretches from
the strictly logical world of bits and bytes to the not-al-
ways-so-logical world of human behavior. It is unavoid-
able that such a stretching exercise leaves its marks. So,
ĹƟ ĹƓ eaƓǅ Ɵť Ǚśč ΅ŐťgĹĆaŐΆ ĬaƧŐƟ ƿĹƟĴ ƟĴe ŐaśgƧageʹ aƓ P Ĵaƾe
shown as well. But from a business perspective (a human
perspective) ArchiMate is very
good at enabling you to model
to the extremes of Enterprise
Architecture. And the fact that
— even without all these im-
provements — we still were able
to use the grammar to the ex-
tent we did shows how powerful
the language already is.

With the right use of patterns
and the right discipline and a
good knowledge of the powerful underlying ideas, you can
take this language far. Even without the improvements
proposed by me in this chapter.

But I do think cleaning a few things up and improving the
language here and there would make it greater still. It is
up to the — by nature (and rightly so) conservative— stan-
dards body to take that step. Standards bodies should
be conservative and slow, or the standard would be too
volatile to be a real standard. On the other hand: when
‘backwards compatibility’ becomes your main worry, and
you cannot innovate, the standard will probably die.

Having said that, I must say that if you write a book like
this (with all that detail and hundreds of diagram, and all
those small side remarks that are so instrumental in giving
you a feel for the language) every update of the stan-
dard, — however `minor’ — tends to become a lot of work.
Because when the standard changes, every detail has to be
checked if it is still correct. That is hard. Hence, I think that
there probably still are details in this book that are incor-
ƋeĆƟͳ ¶ĴeƋe řƧƓƟ ąeͳ PĬ ǅťƧ Ǚśč ƟĴeřʹ řaĹŐ řeͳ

In the meantime, I have come to the conclusion that I
both like improvements and hate them for the inordinate
amount of work they result in. Some changes would mean
I would have to write an entirely new book as with new
possibilities the existing patterns shown would become
too suboptimal. You would still learn the grammar, but the
patterns would not be necessarily good ones.

So, making a decision about these changes would be a
nightmare.

Luckily, it is not up to me but up to The Open Group.

35.11 ArchiMate’s two most serious (and
unsolvable) issues
In my opinion, the most fundamental problem with Archi-
Mate is the split between active and passive in structure.
They weren’t thinking properly twenty-odd years ago,
principled (logical) ‘grammar thinking’ won out over ‘real-
istic thinking’.

The problem is that active structure is often also passive
structure. If a human actor can act, it can also be acted-up-
ťśͳ Pś ĬaĆƟʹ ƟĴe ƋĹgĴƟ čeǙśĹƟĹťś ĬťƋ ΠaĆƟĹƾe ƓƟƋƧĆƟƧƋeΡ řĹgĴƟ
be ‘structure that acts’. It is not a fundamental property at
all, it is a matter of being assigned to behavior that turns
structure into active structure.

In View 371 there is an example:

Assignment from structure to
behavior makes structure active.
Being acted upon (‘Accessed’),
makes structure passive. The
ƋeŐaƟĹťśƓ čeǙśe ƿĴaƟ ĹƓ ƟĴe ĆaƓe
and that may be both.

ArchiMate is not a language, it
is a grammar. And grammatical
thinking (Uncle Ludwig again)
simply cannot catch reality (as

an enterprise architecture notation must).

This one, together with the BDAT ‘layering’ (I invite you
to read https://ea.rna.nl/2022/08/20/layering-is-it-real-
ly-a-useful-approach-in-business-it-enterprise-architec-
ture/Άʹ aƋe Ɠť ĬƧśčařeśƟaŐ Ɵť �ƋĆĴĹnaƟe ƟĴaƟ ǙǄĹśg ƟĴeř
ĹƓśΡƟ ƋeaŐŐǅ ƈťƓƓĹąŐeͳ ÛťƧ ƿĹŐŐ Ĵaƾe Ɵť čeǙśe a śeƿ gƋařřaƋͳ

35.12 Does ArchiMate have a future?
Everything goes extinct sometime. Even ArchiMate will.
ArchiMate could be better, but for the coming years the
řaƋōeƟ ĬťƋĆeƓ ƿĹŐŐ řaōe ĹƟ čĹǗĆƧŐƟ ĬťƋ ƓťřeƟĴĹśg Ɵť eƓƟaą-
lish itself.

The biggest issue I see for ArchiMate is that with the
world’s (digital) landscapes becoming more complex
and more volatile (elements appearing and disappearing
within seconds) over time, having a language that is visual
— as it is intended for human consumption — is becoming
more and more a problem. If we design — and we will, AI
won’t do it for us for the forseeable future — we will design
patterns. And it it will be necessary to link these patterns
ǚeeƟĹśgŐǅ Ɵť ĹśƓƟaśĆeƓ ťĬ ƟĴťƓe ƈaƟƟeƋśƓͳ �ƧƟťřaƟĹťś
of our knowledge about the landscape will be inevita-
ble. Those kind of systems are already available and they
are not ArchiMate-based, nor can they really be. A more
fundamental grammar, based for instance on elements of
this discussion chapter, and potentially generative AI that
is able to create ‘good enough’ human-aesthetics-pleas-
Ĺśg ƋeƈƋeƓeśƟaƟĹťśƓͳ ¶ĴĹƓ ĹƓ ĬaƋ ťǖʹ P gƧeƓƓͳ �śč ƧśƟĹŐ ƟĴeśʹ
ArchiMate will have enough value in our design and docu-
mentation processes to not yet go extinct.

Surgeon Patient

Operates

InformsServes
(is used by)

Assignment
(performs)

Assignment
(performs)

Access
(works with/on)

View 371. Active/Passive is not a property, it is a consequence of
behavior

https://ea.rna.nl/2022/08/20/layering-is-it-really-a-useful-approach-in-business-it-enterprise-architecture/
https://ea.rna.nl/2022/08/20/layering-is-it-really-a-useful-approach-in-business-it-enterprise-architecture/
https://ea.rna.nl/2022/08/20/layering-is-it-really-a-useful-approach-in-business-it-enterprise-architecture/

